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Goal: break computational barrier

High-fidelity computational models

+ Validated RANS/LES model: matches experiment to within 5%

- Large scale: 86 million cells; 200,000 time steps

- High simulation costs: 6 weeks; 5000 cores

Barrier

Many query applications

Uncertainty quantification Design optimization
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Nonlinear dynamical systems and many-query problems
Full-order model (FOM)

Many-query problems
Full-order model

ODE

time discretization

Full-order model
O�E

ODE :
dx
dt

= f (x ; t, µ); x(0, µ) = x0(µ), t 2 [0, T ] , µ 2 D
O�E : rn (xn; µ) = 0, n = 1, ... , N, µ 2 D
QoI : q(xn; µ), n = 1, ... , N, µ 2 D

Many-query problems

Goal: compute QoI for µ 2 Deval ⇢ D

DFOM

Deval

Deval

DROM

DROMES

Deval
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dx
dt

= f (x ; t,µ); x(0,µ) = x0(µ), t ∈ [0,T ] , µ ∈ D

rn (xn;µ) = 0, n = 1, ... ,N, µ ∈ D

Many-query problems

Goal: compute QoI q(xn;µ), n = 1, ... ,N for µ ∈ Deval ⊂ D

DFOM

Deval

Deval

DROM

DROMES

Deval

This is intractable with a large-scale FOM
Reducing nonlinear dynamical systems Kevin Carlberg 3



Approach: ROM and ROMES

Reduce the FOM dimensionality and
quantify the introduced uncertainty

1 Reduced-order model (ROM)

Goal: low-dim dynamical system that accurately represents FOM
Approach: unsupervised machine learning and projection

+ physics-based approximation
+ can preserve special problem structure
+ high speedups possible

2 Reduced-order model error surrogate (ROMES)

Goal: unbiased, low-variance statistical model of the ROM error
Approach: supervised machine learning (regression)

+ more useful than error bounds (overpredict)
+ quantifies ROM-induced epistemic uncertainty
+ enables rigorous integration with UQ
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Approach: leverage simulation data

DFOM

Deval

Deval

DROM

DROMES

Deval

Offline:

1 ROM training: solve FOM for µ ∈ DROM ⊂ Deval

State and residual snapshots

2 ROM construction

Unsupervised ML: discover structure in ROM training data
Projection: reduce FOM dimensionality

3 ROMES training: solve ROM and FOM for µ ∈ DROMES ⊆ Deval

ROM error indicators
ROM QoI error

4 ROMES construction

Supervised ML: map ROM error indicators to ROM QoI error
Online: solve ROM + ROMES for remaining points in Deval
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Approach: leverage simulation data

DFOM

Deval

Deval

DROM

DROMES

Deval

Offline:

1 ROM training: solve FOM for µ ∈ DROM ⊂ Deval

State and residual snapshots

2 ROM construction

Unsupervised ML: discover structure in ROM training data
Projection: reduce FOM dimension

3 ROMES training

4 ROMES construction

Online: solve ROM + ROMES for remaining points in Deval

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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ROM training

rn (xn;µ) = 0, n = 1, ... ,N, µ ∈ DROM

1 Collect ‘snapshots’ of the state (and residual)
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ROM construction: unsupervised machine learning

Principal component analysis (i.e., POD)

Compute SVD: X1 X2 X3 = U ⌃ VT[ ]

Truncate: Φ = [u1 · · · up]
Repeat for residual to construct ΦR

Clustering

Construct sampling matrix P from residual data [C. et al., 2013]
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Approach: leverage simulation data

DFOM

Deval

Deval

DROM

DROMES

Deval

Offline:

1 ROM training: solve FOM for µ ∈ DROM ⊂ Deval

State and residual snapshots

2 ROM construction

Unsupervised ML: discover structure in ROM training data
Projection: reduce FOM dimension

3 ROMES training

4 ROMES construction

Online: solve ROM + ROMES for remaining points in Deval
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How to perform projection with state basis Φ?

Full-order model
ODE

time discretization

Full-order model
O∆E
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How to perform projection with state basis Φ?

Optimize then discretize? (common)

Full-order model
ODE

optimal
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E
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How to perform projection with state basis Φ?

Optimize then discretize? (common)

Discretize then optimize? (uncommon)

Full-order model
ODE

optimal
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E

optimal
projection

LSPG ROM
O∆E

Comparative analysis: C, Barone, Antil, “Galerkin v. least-squares
Petrov–Galerkin projection in nonlinear model reduction,” Journal of
Computational Physics, 330:693–734, 2017.
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Galerkin ROM: first optimize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Full-order model
O∆E

Reducing nonlinear dynamical systems Kevin Carlberg 13



Galerkin ROM

ODE: Galerkin projection on FOM ODE

1 x(t;µ) ≈ x̃(t;µ) = Φx̂(t;µ)
⇡ =

2 ΦT (f (x̃ , t;µ)− d x̃
dt ) = 0

⇡ =

( (
=

d x̂
dt

= ΦT f (Φx̂ , t;µ), x̂(0;µ) = ΦTx0(µ), t ∈ [0,T ] , µ ∈ D

Theorem (Galerkin ROM: time-continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:
d x̃
dt

(Φx̂ , t;µ) = arg min
v∈range(Φ)

‖v − f (Φx̂ , t;µ)‖2
2.
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Galerkin: first optimize, then discretize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E
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Galerkin ROM

ODE

d x̂
dt

= ΦT f (Φx̂ , t;µ), x̂(0) = ΦTx0(µ), t ∈ [0,T ] , µ ∈ D

+ Continuous velocity d x̂
dt is optimal

O∆E

ΦT rn (Φx̂n;µ) = 0, n = 1, ... ,N, µ ∈ D

- Discrete state x̂n is not generally optimal
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LSPG ROM: first discretize, then optimize

Full-order
model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

LSPG ROM
O∆E
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LSPG ROM

FOM O∆E

rn (xn;µ) = 0, n = 1, ... ,N, µ ∈ D

LSPG ROM O∆E:

x̂n = arg min
ẑ∈Rp
‖Arn (Φẑ ;µ) ‖2

2, n = 1, ... ,N, µ ∈ D

m
Ψn(x̂n;µ)T rn (Φx̂n;µ) = 0, n = 1, ... ,N, µ ∈ D

Ψn(x̂ ;µ) := ATA∂rn
∂x (Φx̂ ;µ)

+ Discrete solution is optimal
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How to select weighting matrix A? [C. et al., 2013]

x̂n = arg min
ẑ∈Rp

‖Arn (Φẑ ;µ) ‖2
2

Gappy POD approx of residual rn ≈ r̃n = ΦR (PΦR)+ Prn

x̂n = arg min
ẑ∈Rp

‖r̃n (Φẑ) ‖2
2 ⇔ x̂n = arg min

ẑ∈Rp
‖ (PΦR)+ P︸ ︷︷ ︸

AGNAT

rn (Φẑ) ‖2
2

Sample mesh: Extract mesh subset needed to compute Prn

+ Small problem size: can run on many fewer cores
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Cavity-flow problem Collaborator: M. Barone (SNL)

Unsteady, compressible
Navier–Stokes
DES turbulence model
M∞ = 0.6

Re = 6.3× 106

1.2× 106 degrees of
freedom

Reducing nonlinear dynamical systems Kevin Carlberg 20



GNAT performance (t ≤ 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

+ Sample mesh: 4.1% nodes, 3.0% cells

+ 229x CPU-hour savings

FOM: 5 hour x 48 CPU
GNAT ROM: 32 min x 2 CPU

- Galerkin unstable
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Why is LSPG more accurate than Galerkin? [C. et al., 2017]

Theorem (Local a posteriori bounds: BDF schemes)

If the following conditions hold:

1 ∃κ > 0 such that ‖f (x , ·; ·)− f (y , ·; ·)‖2 ≤ κ‖x − y‖2,
∀x , y ∈ RN

2 ∆t small enough such that 0 < h := |α0| − |β0|κ∆t

3 A BDF scheme is employed for time integration, then

‖δxn
G‖ ≤

1

h
‖rnG (Φx̂n

G ;µ)‖2+
1

h

k∑

`=1

|α`|‖δxn−`
G ‖

‖δxn
L‖ ≤

1

h
min

y∈range(Φ)
‖rnP(y ;µ)‖2+

1

h

k∑

`=1

|α`|‖δxn−`
L ‖

δxn
G := xn

? −Φx̂n
G . δxn

L := xn
? −Φx̂n

L

LSPG sequentially minimizes the time-local error bound

Can we use this bound for error estimation?
Reducing nonlinear dynamical systems Kevin Carlberg 22



Time-global error bound [C. et al., 2017]

Theorem (Global a posteriori bounds: BDF schemes)

If the following conditions hold:

1 ∃κ > 0 such that ‖f (x , ·; ·)− f (y , ·; ·)‖2 ≤ κ‖x − y‖2,
∀x , y ∈ RN

2 ∆t small enough such that 0 < h := |α0| − |β0|κ∆t

3 A BDF scheme is employed for time integration, then

‖δxn
G‖ ≤

γ1(γ2)n exp(γ3t
n)

γ4 + γ5∆t
max

j∈{1,...,n}
‖r jG (Φx̂ j

G ;µ)‖2

‖δxn
L‖ ≤

γ1(γ2)n exp(γ3t
n)

γ4 + γ5∆t
max

j∈{1,...,n}
min

y∈range(Φ)
‖r jP(y ;µ)‖2

δxn
G := xn

? −Φx̂n
G . δxn

L := xn
? −Φx̂n

L

Global error bounds grow exponentially in time and overpredict the error

Deterministic: not amenable to integration with UQ

Idea: construct accurate statistical error estimates from data
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Observation: ROMs generate error indicators that inform the error

26 ROMES METHOD
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Figure 15. Relationship between between dual-weighted-residual indicators ⇢1 = yred,1(µ)tr (ured; µ) and
errors in the (non-compliant) first output �s1 .

5.6. Multiple and non-compliant outputs. Finally, we assess the performance of ROMES
on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

Z

⌦
�Dirac(x � xi)u (xi; µ) dx = u (xi; µ) , i = 1, 2.(5.11)

where �Dirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error f�s1 and f�s2 . As previously discussed, we use dual-weighted
residuals as indicators ⇢i(µ) = yred,i(µ)tr (ured; µ), i = 1, 2 and no transformation d ⌘ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the o✏ine stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute �s1(µ), �s2(µ), ⇢1(µ) (of varying fidelity), ⇢2(µ) (of
varying fidelity), for µ 2 P̄ ⇢ P with card

�
P̄
�

= 500. The first T = 100 points define the
training set Plearn ⇢ P̄ and the following 400 points constitute the validation set Pvalidation ⇢
P̄.

Figure 15 depicts the observed relationship between indicators ⇢1(µ) (of di↵erent fidelity)
and the error in the first output �s1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.
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Figure 2. Relationship between RB error bounds �u, residual norms kr(V û; µ)k, and the true state-space
errors |||�u|||, visualized by evaluation of 200 random sample points in the input space. Here, |||·||| denotes the
energy norm defined in Section 5.1.

logarithm) that can be specified to facilitate construction of the statistical model. We can
then interpret the statistical model of the error as a random variable �̃ : ⇢ 7! d�1(m̃(⇢)).

Three ingredients must be selected to construct this mapping m̃: 1) the error indicators
⇢, 2) the transformation function d, and 3) the methodology for constructing the statistical
model from the training data. We will make these choices such that the stochastic mapping
satisfies the following conditions:

1. The indicators ⇢(µ) are cheaply computable and low dimensional given any µ 2 P.
In practice, they should also incur a reasonably small implementation e↵ort, e.g., not
require modifying the underlying high-fidelity model.

2. The mapping m̃ exhibits low variance, i.e., E
h
(m̃(⇢(µ)) � E [m̃(⇢(µ))])2

i
is ‘small’ for

all µ 2 P. This ensures that little additional epistemic uncertainty is introduced.
3. The mapping m̃ is validated :

(3.1) !validation (!) ⇡ !, 8! 2 [0, 1) ,

where !validation (!) is the frequency with which validation data lie in the !-confidence
interval predicted by the statistical model

(3.2) !validation (!) :=
card ({µ 2 Pvalidation | d(�(µ)) 2 C! (µ)})

card (Pvalidation)
.

Here, the validation set Pvalidation ⇢ P should not include any of the points µn, n =
1, . . . , N employed to train the error surrogate, and the confidence interval C! (µ) ⇢ R,
which is centered at the mean of m̃(⇢(µ)), is defined for all µ 2 P such that

(3.3) P[m̃(⇢(µ)) 2 C! (µ))] = !.

In essence, validation assesses whether or not the data do indeed behave as random
variables with probability distributions predicted by the statistical model.

10�110�2
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residual norm
error bound

Goal: map error indicators (features) to the ROM error (response)

1 High-dimensional regression model (supervised ML)
maps error indicators to a prediction of the error
methods: random forest, support vector machine, k-NN

+ enables many candidate error indicators to be considered

2 Gaussian-process model
maps regression-model output to a distribution over the error

+ removes regression-model bias
+ GP variance quantifies the ROM-induced epistemic uncertainty
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Approach: leverage simulation data

DFOM

Deval

Deval

DROM

DROMES

Deval

Offline:

1 ROM training

2 ROM construction

3 ROMES training: solve ROM and FOM for µ ∈ DROMES ⊆ Deval

ROM error indicators
ROM QoI error

4 ROMES construction

Supervised ML: map ROM error indicators to ROM QoI error
Online: solve ROM + ROMES for remaining points in Deval

Collaborators: M. Drohmann, B. Freno (Sandia);
S. Trehan, L. Durlofsky (Stanford)
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ROMES formulation [Drohmann and C., 2015, Trehan et al., 2017]

FOM produces sequence of QoI values

µ 7→ qnFOM(µ) := q(xn(µ);µ), n = 1, ... ,N

ROM: produces sequence of QoI and error-indicator values

µ 7→ qnROM := q(Φxn(µ);µ), n = 1, ... ,N

µ 7→ ρn(µ), n = 1, ... ,N

ROMES training:

1 Solve ROM and FOM for µ ∈ DROMES

2 Training data: {(ρn(µ), qnFOM(µ)− qnROM(µ)}µ∈DROMES

ROMES construction:

1 Apply supervised ML to predict response from features
Features: error indicators ρn(µ)
Response: error qnFOM(µ)− qnROM(µ)

2 GP postprocessing to remove bias and quantify variance
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Example 1: GP only, stationary problem [Drohmann and C., 2015]

1 2 3

4 5 6

7 8 9

ΓD

ΓN1

ΓN0

4c(x ;µ)u(x ;µ) = 0 in Ω x(µ) = 0 on ΓD

∇c(µ)x(µ) · n = 0 on ΓN0 ∇c(µ)x(µ) · n = 1 on ΓN1

Inputs: µ ∈ [0.1, 10]9 define diffusivity c in subdomains

ROM: RB–Greedy [Patera and Rozza, 2006]
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Error: energy norm of state-space error
Error indicator: residual norm

132 MARTIN DROHMANN AND KEVIN CARLBERG

Figure 4. Visualization of ROMES surrogates (δ = |||δu||| and ∥δu∥X , ρ = log r, d = log), computed using
N = 100 training points and the (i) GP kernel method and (ii) RVM.

We now assess the validity of the Gaussian-process assumptions underlying the ROMES

surrogates |̃||δu||| and δ̃s, i.e., condition 3 of section 3.1. From the discussion in Remark 4.1,
we know if the underlying GP model form is correct, then as the number of training points
increases, the uncertainty about the mean decreases and the set {D(µ) | µ ∈ Pvalidation} with

(5.7) D(µ) := d (|||δu(µ)|||) − E
[
d

(
|̃||δu|||(ρ(µ))

)]
= d (|||δu(µ)|||) − ν (ρ(µ))

should behave like samples from the distribution N (0,σ2). Figure 5 reports this validation
test and verifies that this condition does indeed hold for a sufficiently large number of training
points.

Further, we can validate the inferred confidence intervals as proposed in (3.1). The table
within Figure 5 reports ωvalidation (ω) (see (3.2)), which represents the frequency of observed
predictions in the validation set that lie within the inferred confidence interval Cω. We declare
the ROMES model to be validated, as ωvalidation (ω) ≈ ω for several values of ω as the number
of training points increases.

The results for the ROMES surrogate δ̃s are very similar to those presented in Figure 5
and will be further discussed in section 5.3. Note that the inferred Gaussian process is well
converged with a moderately sized training set consisting of only N = 35 points.

5.3. Output error: Comparison with multifidelity correction. As discussed in section

3.2, multifidelity-correction methods construct a surrogate δ̃s,MF of the output error using
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Figure 10. Validation of the probabilistically rigorous ROMES surrogates |̃||δu|||
c

(GP kernel, δ = |||δu|||,
ρ = log r, d = log) and comparison with RB error upper bound ∆µ

u and uniform distribution based on reduced-

basis error bounds δ̃uni. The top plots compare statistics of the effectivities η(c, µ) with c = 0.5 and c = 0.9 of
the probabilistically rigorous ROMES surrogates with the RB error-bound surrogates. The bottom plots compare
the frequency of error overestimation cvalidation with the desired value c (red line).

As the probabilistically rigorous ROMES surrogates |̃||δu|||
c

are stochastic processes, we
can measure their (most common) effectivity as

(5.9) η(c,µ) :=
mode

(
|̃||δu|||

c
(ρ(µ))

)

|||δu(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema
of the effectivities η(0.5,µ) and η(0.9,µ) for all validation points µ ∈ Pvalidation. Again, we

compare with δ̃uni, which is a uniform distribution on an interval whose endpoints correspond
to the lower and upper bounds for the error |||δu(µ)|||. We also compare with the corresponding
statistics for the effectivity of the RB error bound ∆µ

u. The lower bound for the coercivity
constant that is needed in the RB error bound ∆µ

u is chosen as the minimum over all parameter
components αLB(µ) = mini∈{1,...,9} µi. This simple choice is effective because the example is
affinely parameter dependent and linear [29, Chap. 4.2].

We observe that the ROMES surrogate yields better results than both the error bound ∆µ
u

(which produces effectivities roughly between one and eight) and the uniform distribution δ̃uni

(which produces mode effectivities roughly between one and four). The 50%-rigorous ROMES
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Validation frequency ωvalidation (ω)

predicted ω N = 10 N = 35 N = 65 N = 95

0.80 0.49 0.71 0.76 0.78
0.90 0.59 0.82 0.87 0.88
0.95 0.68 0.89 0.92 0.93
0.98 0.76 0.93 0.95 0.96
0.99 0.80 0.94 0.96 0.97

histogram inferred pdf

Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel, δ = |||δu|||, ρ = log r, d = log)
with a varying number of training points N . The histogram corresponds to samples of D(µ), and the red curve
depicts the probability distribution function N (0, σ2). The table reports how often the actual error lies in the
inferred confidence intervals.

the system inputs as error-surrogate inputs, i.e., δ = δs, ρ = µ, and d = idR. In this
section, we construct this multifidelity-correction surrogate using the same GP kernel method
as ROMES. In [27] it is demonstrated that this error surrogate fails to improve the “corrected
output” when the low-fidelity model corresponds to an ROM. We now verify this result and
show that—in contrast to the multifidelity-correction approach—the ROMES surrogate δ̃s

constructed via the GP kernel method with δ = δs, ρ = log r, and d = log yields impressive
results: on average, the output “corrected” by the ROMES surrogate reduces the error by an
order of magnitude, and the Gaussian-process assumptions can be validated. The validation
quality improves as the number of training points increases, but a moderately sized set of only
N = 20 training points leads to a converged surrogate.

The reason multifidelity correction fails for most ROMs is twofold. First, the mapping
µ !→ δs can be highly oscillatory in the input space. This behavior arises from the fact that the
reduced-order-model error is zero at the (greedily chosen) ROM training points but grows (and
can grow quickly) away from these points. Such complex behavior requires a large number
of error-surrogate training points to accurately capture. In addition, the number of system
inputs is often large (in this case nine); this introduces curse-of-dimensionality difficulties
in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping between
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Error: error in temperature at a point
Error indicator: dual-weighted residual
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Figure 15. Relationship between between dual-weighted-residual indicators ⇢1 = yred,1(µ)tr (ured; µ) and
errors in the (non-compliant) first output �s1 .

5.6. Multiple and non-compliant outputs. Finally, we assess the performance of ROMES
on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

Z

⌦
�Dirac(x � xi)u (xi; µ) dx = u (xi; µ) , i = 1, 2.(5.11)

where �Dirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error f�s1 and f�s2 . As previously discussed, we use dual-weighted
residuals as indicators ⇢i(µ) = yred,i(µ)tr (ured; µ), i = 1, 2 and no transformation d ⌘ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the o✏ine stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute �s1(µ), �s2(µ), ⇢1(µ) (of varying fidelity), ⇢2(µ) (of
varying fidelity), for µ 2 P̄ ⇢ P with card

�
P̄
�

= 500. The first T = 100 points define the
training set Plearn ⇢ P̄ and the following 400 points constitute the validation set Pvalidation ⇢
P̄.

Figure 15 depicts the observed relationship between indicators ⇢1(µ) (of di↵erent fidelity)
and the error in the first output �s1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.
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where �Dirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error f�s1 and f�s2 . As previously discussed, we use dual-weighted
residuals as indicators ⇢i(µ) = yred,i(µ)tr (ured; µ), i = 1, 2 and no transformation d ⌘ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the o✏ine stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).
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and the error in the first output �s1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
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on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

Z

⌦
�Dirac(x � xi)u (xi; µ) dx = u (xi; µ) , i = 1, 2.(5.11)

where �Dirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error f�s1 and f�s2 . As previously discussed, we use dual-weighted
residuals as indicators ⇢i(µ) = yred,i(µ)tr (ured; µ), i = 1, 2 and no transformation d ⌘ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the o✏ine stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute �s1(µ), �s2(µ), ⇢1(µ) (of varying fidelity), ⇢2(µ) (of
varying fidelity), for µ 2 P̄ ⇢ P with card
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= 500. The first T = 100 points define the
training set Plearn ⇢ P̄ and the following 400 points constitute the validation set Pvalidation ⇢
P̄.

Figure 15 depicts the observed relationship between indicators ⇢1(µ) (of di↵erent fidelity)
and the error in the first output �s1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.
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Figure 16 reflects the necessity of employing a large enough dual reduced basis to compute
the dual-weighted-residual error indicators. For a small dual reduced basis, there is almost no
improvement in the mean, and only a slight improvement in the median; in some cases, the
‘corrected’ outputs are actually less accurate. However, the most accurate dual solutions yield
a mean and median error improvement of two orders of magnitude. This illustrates the ability
and utility of uncertainty control when dual-weighted residuals are used as error indicators.
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Figure 16. Expected improvement I(e�, µ) for ROMES surrogate (RVM, � = �s, ⇢i = yred,i(µ)tr (ured; µ),
i = 1, 2, d = idR) for a varying number of training points T and di↵erent dual reduced-basis-space dimensions.
Compare with Figure 7 (1: no improvement, > 1: error worsened, < 1: error improved).

Table 17 reports validation results for the inferred confidence intervals. While the valida-
tion results are quite good (and appear to be converging to the correct values), they are not
as accurate as those obtained for the compliant output.

6. Conclusions and outlook. This work presented the ROMES method for statistically
modeling reduced-order-model errors. In contrast to rigorous error bounds, such statistical
models are useful for tasks in uncertainty quantification. The method employs supervised
machine learning methods to construct a mapping from existing, cheaply computable ROM
error indicators to a distribution over the true error. This distribution reflects the epistemic
uncertainty introduced by the ROM. We proposed ROMES ingredients (supervised-learning
method, error indicators, and transformation function) that yield low-variance, numerically
validated models for di↵erent types of ROM errors.
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Example 2: ML and GP, stationary problem [Freno and C, 2017]

x
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z

Figure 24: PCAP: Mesh with boundary conditions and nodes of interest: red denotes pressure (Neumann boundary
condition), blue denotes blue denotes planar constraint (Dirichlet boundary condition), orange denotes nodes of
interest
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Figure 25: PCAP: Largest simulated deformation (right) compared to undeformed state (left)
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Predictive Capability Assessment Project (PCAP)

Mechanical response

2.8× 105 degrees of freedom

Inputs: µ ∈ [50 GPa, 100 GPa]× [0.2, 0.35] define tube
elastic modulus and Poisson ratio

QoI: displacement of node of interest (orange)

ROM: POD–Galerkin with |DROM| = 8

ROMES: 150 data points (|DROMES| = 30 and five ROM
basis dimensions)

Reducing nonlinear dynamical systems Kevin Carlberg 30



Error: error in y -displacement at a point

Error indicators: 5000 elements of residual, input parameters

random forest
error prediction

support vector machine
error prediction

k-nearest neighbors
error prediction
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
eyRF from [P43(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]

eyk−NN from [P5(rT ), µ]

−0.010 −0.008 −0.006 −0.004 −0.002 0.000 0.002 0.004
−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

e y
 

 

95% Confidence Interval

k-NN GP Training Mean

eyk−NN

k-NN GP Training

k-NN GP Testing

(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
eyRF from [P43(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]

eySVM from [P5(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]

eyk−NN from [P5(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
eyRF from [P43(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]

eyk−NN from [P5(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]

−0.010 −0.008 −0.006 −0.004 −0.002 0.000 0.002 0.004
−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

e y

 

 

95% Confidence Interval

k-NN GP Training Mean

eyk−NN

k-NN GP Training

k-NN GP Testing

(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(a) RF: response = ey, indicators = [P5(rT ), µ]
eyRF from [P43(rT ), µ]
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(b) RF: response = ey, indicators = [P43(rT ), µ]

eySVM from [P5(rT ), µ]
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(c) SVM: response = ey, indicators = [P5(rT ), µ]
eySVM from [P43(rT ), µ]
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(d) SVM: response = ey, indicators = [P43(rT ), µ]

eyk−NN from [P5(rT ), µ]
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(e) k-NN: response = ey, indicators = [P5(rT ), µ]
eyk−NN from [P43(rT ), µ]
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(f) k-NN: response = ey, indicators = [P43(rT ), µ]
Figure 28: PCAP: ML Prediction: response = ey, indicators = [Pmr(rT ), µ]
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(b) p = Œ
Figure 34: PCAP: ML prediction relative error: log10 Îer ≠ erMLÎp/ÎerÎp, indicators = [Pmr(rT ), µ]
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(a) Error scaling factor when mr = 5
log10 |(ur corr. − urFOM)/(urROM − urFOM)| from [P43(rT ), µ]
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(b) Error scaling factor when mr = 43

log10 |(ur − urFOM)/urFOM |
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ur = urROM

ur = urcorr. from [P5(rT ), µ]

(c) Relative error distribution when mr = 5
log10 |(ur − urFOM)/urFOM |
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ur = urROM

ur = urcorr. from [P43(rT ), µ]

(d) Relative error distribution when mr = 43
Figure 35: PCAP: Change in er due to SVM correction, indicators = [Pmr(rT ), µ]. In the top two plots, abscissa
values less than zero indicate an improvement. In the bottom two plots, there is an overall improvement if the
relative error in the corrected solution shifts to the left, relative to the uncorrected solution.
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+ ML methods yield low-variance error predictions

+ ML methods amenable to large number of error indicators

+ Gaussian process removes regression-model bias
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Example #3: ML and GP, nonlinear dynamical system
[Trehan et al., 2017]

16

grid block d 2 DP , classification features include quantities such as the di↵erence between the

test BHP schedule and the primary training run BHP controls µ́, i.e.,
⇣ nP

k=1

�
uk

d � úk
d

�2 ⌘1/2

,

the average well-block pressure di↵erence between all producer-injector pairs, 1
n

nP
k=1

(eT
2d�1 �

eT
2d0�1)�zk, d0 2 DI , and the average well-block pressure di↵erence between the test case and

the primary training simulation, represented by 1
n

nP
k=1

(eT
2d�1�)(zk � źk). Table II reports some

of the classification features employed in the current application.

Table II. Classification features fn
c corresponding to a production well in grid block d 2 DP

No. Feature No. Feature

1.
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2. 1
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�

3.
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�
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, d0 2 DI 4.
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�
(eT
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5. 1
n

nP
k=1

(eT
2d�1 � eT

2d0�1)�zk, d0 2 DI 6. 1
n

nP
k=1

(eT
2d�1�)(zk � źk)

4. NUMERICAL RESULTS

In this section, we present numerical results for the application described in Section 3. The
specific problem involves flow simulation in a synthetic two-dimensional horizontal reservoir.
The reservoir model contains 50 ⇥ 50 grid blocks such that Nc = 2500 and Nx = 5000. It
contains three production wells |DP | = 3, which we label as P1, P2, and P3, and three injection
wells |DI | = 3, which we label as I1, I2, and I3. The six wells (Nu = 6) are shown in Figure 5.
The permeability field is isotropic, i.e., k = diag(k), and the porosity is set to � = 0.2. The
relative permeability functions are prescribed to be krw(S) = S2 and kro(S) = (1 � S)2. We
apply a backward Euler time integrator with adaptive time-step selection.

Figure 5. Permeability field (log k, with k in md) and well locations (Model 1, from [64]).

Three training simulations, |TTPWL| = 3, are performed to construct the POD–TPWL model
(the three runs provide a su�cient number of snapshots for the POD basis), from which ` = 150
POD basis vectors are extracted. Of these, 90 correspond to the saturation state variables and
60 to the pressure state variables. Figure 6 depicts the BHP controls µ́ 2 TTPWL applied in
the primary training simulation (recall that this is the run used for linearization). These time-
varying BHPs, as well as those considered in the test runs, are meant to be representative of

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme

Permeability field with injection Ij and production Pj wells

Two-phase oil–water system in porous medium (Darcy’s law)

5× 103 degrees of freedom

Inputs: time-varying bottom-hole pressure (BHP) at injector
wells

QoI: oil/water production rates

ROM: POD–TPWL with |DROM| = 3

ROMES: |DROMES| = 200
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Error: phase flow rates at production well

Error indicators: 168 application-specific quantities
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Figure 12. Test Case 3 – BHP profiles.
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(a) Oil production rate at well P1
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(b) Water production rate at well P1
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(c) Water injection rate at well I3

Figure 13. EEML for QoI correction – Test Case 3. Production and injection rates predicted by
various models. Best-performing EEML parameters: Ntrain = 30, ⌧ = 1, clustering (CL) feature-space

partitioning, random-forest (RF) regression.
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Figure 14. EEML for QoI correction: additional test cases. Relative time-integrated error in production
and injection rates as defined by Equation (35) for Ntrain = 30, ⌧ = 1, CL + RF.

Table III presents the median errors for the test set SEEML results displayed in Figure 14.
We observe that by applying the EEML correction, we reduce the three errors, ERL(o, DP ),
ERL(w, DP ) and ERL(w, DI), by about 38% on average. Although we achieve substantial
improvements at certain time instances using EEML (as is evident in Figure 9a,b), small
errors in time persist. The EEML procedure reduces these errors but it does not completely
eliminate them.

Table III. EEML for QoI correction: additional test cases. Median value of the time-integrated errors
in POD–TPWL and corrected solutions over cases in EEML test set µ 2 SEEML

Method Ei(o, DP ) Ei(w, DP ) Ei(w, DI)
POD–TPWL (i = RL) 4.5% 6.3% 6.6%

EEML correction (i =corr) 2.8% 4.4% 3.7%

We note that one source of error in the EEML predictions is misclassification, which in
turn leads to using the local regression model from the incorrect category. The average
misclassification error—defined as the ratio of the number of EEML test samples misclassified
to the total number of EEML test samples—over cases in the EEML test set SEEML is 3%
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and injection rates as defined by Equation (35) for Ntrain = 30, ⌧ = 1, CL + RF.

Table III presents the median errors for the test set SEEML results displayed in Figure 14.
We observe that by applying the EEML correction, we reduce the three errors, ERL(o, DP ),
ERL(w, DP ) and ERL(w, DI), by about 38% on average. Although we achieve substantial
improvements at certain time instances using EEML (as is evident in Figure 9a,b), small
errors in time persist. The EEML procedure reduces these errors but it does not completely
eliminate them.

Table III. EEML for QoI correction: additional test cases. Median value of the time-integrated errors
in POD–TPWL and corrected solutions over cases in EEML test set µ 2 SEEML

Method Ei(o, DP ) Ei(w, DP ) Ei(w, DI)
POD–TPWL (i = RL) 4.5% 6.3% 6.6%

EEML correction (i =corr) 2.8% 4.4% 3.7%

We note that one source of error in the EEML predictions is misclassification, which in
turn leads to using the local regression model from the incorrect category. The average
misclassification error—defined as the ratio of the number of EEML test samples misclassified
to the total number of EEML test samples—over cases in the EEML test set SEEML is 3%
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Summary: ROM and ROMES

Reduce the FOM dimensionality and
quantify the introduced uncertainty

1 Reduced-order model (ROM)

Goal: low-dim dynamical system that accurately represents FOM
Approach: unsupervised machine learning and projection

+ physics-based approximation
+ can preserve special problem structure
+ high speedups possible

2 Reduced-order model error surrogate (ROMES)

Goal: unbiased, low-variance statistical model of the ROM error
Approach: supervised machine learning (regression)

+ more useful than error bounds (not sharp)
+ quantifies ROM-induced epistemic uncertainty
+ enables rigorous integration with UQ
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